BIOSYNTHESIS OF EPHEDRINE IN EPHEDRA

PARTICIPATION OF C₆-C₁ UNIT

Kazuo Yamasaki, Ushio Sankawa and Shoji Shibata

Faculty of Pharmaceutical Sciences, University of Tokyo, Japan

(Received in Japan 26 August 1969; received in UK for publication 4 September 1969)

In the previous studies on the biosynthesis of ephedrine in <u>Ephedra distachya</u> L.(Ephedraceae) Shibata et al.¹⁻⁴⁾described that ¹⁵N of labelled phenylalanine was incorporated into nitrogen of l-ephedrine and ¹⁴C-methyl group of methionine into N-methyl group, while ¹⁴C of formate was distributed 42% in N-methyl and 37% in C-methyl (at the γ -position of side chain), and carbonyl-¹⁴C of ω -aminoacetophenone was highly incorporated into the α -position of ephedrine side chain.

On the basis of these results, the following scheme was proposed for the biosynthesis of l-ephedrine in Ephedra plant.

However, our renewed experiments revealed that phenylalanine labelled at 2^{-14} C was not incorporated into 1-ephedrine, whereas aromatic ³H and 3^{-14} C were introduced in it.

The location of radioactivity was proved by the degradation of l-ephedrine by Kuhn-Roth oxidation into benzoic acid and acetic acid. The latter was characterized as the p-bromophenacyl ester.

Labelled position	Incorporation ratio	Specific activities of degradation products (100 = Specific activity of l-ephedrine)	
		Benzoic acid	Acetic acid
Aromatic- ³ H	2.9×10^{-4}	*	
2- ¹⁴ C	nil		
3– ¹⁴ C	$1.4 \ge 10^{-4}$		
Aromatic- ³ H	5.3×10^{-4}	106	
1 ₂₋ 1 ⁴ C	4.0×10^{-5}		
Aromatic- ³ H	8.5×10^{-4}		
1_{3-14} C	8.4×10^{-4}	100	nil
$\begin{cases} 2^{-14}C \\ 3^{-14}C \end{cases}$	8.2 x 10 ⁻⁵	92	nil

Table I Incorporation of DL-Phenylalanine into 1-Ephedrine

* --- not measured

These results suggest that phenylalanine fed to the plant is cleaved between $C_{(2)}$ and $C_{(3)}$, and only $C_6 - C_1$ portion is used for the biosynthesis of l-ephedrine. Then sodium benzoate (Carboxyl-¹⁴C), benzaldehyde(Carbonyl-¹⁴C) and sodium cinnamate-(3¹⁴C) were administrated to Ephedra. All these labelled compounds were incorporated in higher ratios than phenylalanine into the corresponding positions of ephedrine molecule.

Table	п
-------	---

Incorporations of Benzoate, Benzaldehyde and Cinnamate into 1-Ephedrine

Precursors	Incorporation ratio	Specific activities of degradation products (100 = Specific activity of 1-ephedrine)	
		Benzoic acid $(\phi - C_{\alpha})$	Acetic acid (C _β -Cγ)
Benzoate (Carboxyl-	14 C) 1.3 x 10 ⁻¹	104	nil
Benzaldehyde(Carbonyl- ¹⁴ C) 1.6 x 10 ⁻²		96	nil
$Cinnamate(3-^{14}C)$	1.2×10^{-3}	100	nil

Mescaline in Cactus, hordenine in germinating barley and epinephrine in the medulla of the adrenals were experimentally proved to be biosynthesized from tyrosine via C₆-C₂-N intermediates. In contrast with them, ephedrine is biosynthesized from C_6-C_1 and $C_2-N(+C_1)$ units.

The existence of benzylmethylamine was reported⁵⁾ in Ephedra, which would suggest the possibility of occurrence of C_6-C_1 intermediate.

The incorporation of phenylalanine- $(3^{14}C)$ into d-norpseudoephedrine in <u>Catha</u> edulis reported by Leete⁶⁾ is not incompatible with our new scheme of ephedrine biosynthesis.

Ephedrine and its homologues contained in Ephedra plants have S-configuration about the carbon atom at 3 -position of the side chain. Contrary to this, chloramphenicol has R-configuration in respect to the corresponding position and it is biosynthesized from L-p-aminophenylalanine without decarboxylation.⁹⁾ If L-serine or L-alanine are combined with benzoic acid or benzaldehyde, the configuration of the β -carbon atom must be S. A remarkable distribution (37 %) of the radioactivity of formate-¹⁴C into the γ -carbon of ephedrine, which was shown in the previous experiment³⁾ could be explained by the contribution of formate via serine. The feeding experiment using L-serine(U-¹⁴C) and L-alanine(U-¹⁴C) showed poor incorporation into ephedrine (5.4x 10⁻³, and 7.4 x 10⁻⁴%, respectively) and randomization of radioactivity giving no conclusive evidence for the origin of C₂-N unit. However, this cannot exclude the above possibility, since similar example of the formate incorporation was observed at the tryptophan moiety of evodiamine, a Rutaceous alkaloid⁷.

The incorporation of \checkmark -aminoacetophenone(Carbonyl-¹⁴C) into ephedrine can be explained by its unstable nature decomposing into C_6-C_1 unit, and the incorporation of ¹⁵N-labelled phenylalanine would be resulted by transamination. By the present experimental results the scheme of ephedrine biosynthesis proposed previously has to be amended, and the following pathway is now presented:

A biogenetical hypothesis involving the condensation of benzaldehyde and N-methylalanine was suggested by Akabori and Momotani⁸⁾ on the basis of their chemical synthesis of dl-pseudo-ephedrine.

Acknowledgements ---- The authors wish to thank the Chiba Experimental Station of Tokyo University Forest for the cultivation of Ephedra plants. Thanks are also due to Ministry of Education for grant.

References

- 1. S. Shibata and I. Imaseki : Chem. Pharm. Bull. (Tokyo), 4 , 277 (1956)
- 2. S. Shibata, I. Imaseki and M. Yamazaki: Chem. Pharm. Bull. (Tokyo), 5, 71 (1957)
- 3. S. Shibata, I. Imaseki and M. Yamazaki: <u>Chem.Pharm.Bull.</u>(Tokyo), <u>5</u>, 594 (1957); <u>Chem.&</u> <u>Ind.</u>, <u>1958</u>, 1625.
- 4. S. Shibata, I. Imaseki and M. Yamazaki: Chem. Pharm. Bull. (Tokyo), 7, 449 (1959)
- R.H.F. Manske and H.L. Holmes: <u>The Alkaloids</u>, Vol. III, pp 339 (Academic Press, New York and London, 1953)
- 6. E. Leete: Chem. & Ind., 1958 , 1088
- 7. M. Yamazaki y. A. Ikuta , T. Mori and T. Tanaka: <u>Tetrahedron Letters</u> , <u>1967</u>, 3317
- 8. S. Akabori and K. Momotani: Proc.Imp. Acad. (Tokyo), 17 , 506 (1941).
- 9. R.McGrath, L.C.Vining, F.Sala and S.Westlake: Can.J.Biochem. ,46, 587 (1968)